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Theory has been formulated of a convective rotating spherical elcctrode in the creeping flow 
regime (Re -+ 0). The currently available boundary layer solution for Pe -+ 00 has becn con­
fronted with an improved similarity description applicable in the whole range of the Peclet 
number. 

Application of a rotating spherical electrode un der the convective conditions of the hydrodynamic 
boundary layer1 - 5, i.e. for Re ~ 10, offers no advantages over the known6 rotating disc elec­
trode. A different situation arises in the case of viscous liquids, rota ting microelectrodes or in re­
gion of low speeds of rotation. In all these cases the Reynolds number, Re = QR20/II, may assume 
subcritical values, Re ~ 10, when the character of the flow is that of the creeping motion . The 
hydrodynamic theory of three dimensional creeping rotational flow past a slowly rotating sphere 
has remained so far the only in detail examined case of this type of the secondary creeping 
flow 7 - J 1. Based on the knowledge of the field of meridional velocities, theory can be formulated 
for this case of the convective diffusion. This theory has been used earlier to interpret some 
absolute electrochemical measurements in high viscosity liquids using a polar electrode mounted 
flush on a rotating spindleI2 ,13. Fo r similar purposes the disc electrode has been so far inappli­
cable as the field of meridional veloci ties for Re -i> 0 has been in this case unknown. 

The present paper explains the earlier experimentally utilized 12
,13, yet so far 

unpublished theory of convective diffusion to a slowly rotating sphere (Re -t 0) 
under the conditions allowing utilization of the concentration boundary layer concept 
(Pe -t 00). 

THEORETICAL 

The Axially Symmetric Concentration Boundary Layer 

The mathematical theory of convective diffusion is generally coupled with the study 
of the boundary value problems of the elliptic type. An important exception to this 
rule represent problems of convective diffusion in the flow past a wall where a con­
stant concentration of the transported solute is maintained. For a broad region 
of controlling conditions (velocity of liquid, dimensions of the transport active 
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surface, diffusion coefficient of the transported solute) the transport of the solute 
takes place only within a thin shell adherring to the wall (the concentration bound­
ary layer, CBL) while the composition of the core of liquid remains essentially 
unaffected. Under such circumstances the problem may be formally simplified as fol­
lows: 1) neglect diffusional fluxes parallel to the wall compared to the lateral dif­
fusional fluxes; 2) neglect effects of curvature of CBL in the convective and diffusional 
terms; 3) linearize profile of the longitudinal velocity in CBL; 4) take concentration 
of the transported solute outside CBL constant, C = co. 

The simplifications 1 and 4 reduce the studied problem to a parabolic one, while 
the simplifications 2 and 3 enable similarity solution to be obtained in a simplified 
closed form. For twodimensional systems with planar symmetry corresponding 
similarity transformation has been formulated by Lighthill14; for axially symmetric 
problems his results have been modified by Acrivos 15 . Certain applications of these 
transformations to problems of electrochemical convective diffusion under the con­
ditions of limiting diffusion current have been pUblished in Newman's surway16. 

For axially symmetric cases lS ,16 the results of the tht:ary of CBL may be sum­
marized as follows. In local Cartesian coordinates (x, y) , (Fig. 1) and after the above 
mentioned simplifications the equation of convective diffusion takes the form: 

(1) 

where ro = I"o(x) determines the profile of the rotationally symmetric walLc<:mfining 
the flow and y = y(x) designates local gradient of longitudinal velocity on the wall, 
y = ayv.ly=o. Solution of this parabolic equation with the boundary conditions as 

C = 0 for y = 0 and x > 0 (2a) 

C = Co for y = 00 or x = 0 (2b) 

may be expressed in the form with a single independent variable 

(3) 

(4) 

where 

(5) 

Collection Czechoslovak Chern. Ct"Jmmun. [Vol. 481 [19831 



Convective Diffusion to a Slowly Rotating Spherica l Electrode 1573 

The resulting local and mean fluxes may then be expressed by simple explicit formulas 

(6) 

(7) 

where, according to (5) and (7) 

(8) 

The Nernst mean thickness of the concentration boundary layer is introduced 
by the usual definition as 1J = Deop. If YL is a chaJ acteristic mean value of the gra­
dient of meridional velocity on the wall, then we have clearly from Eqs (7), (8) 
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FIG. 1 

Boundary layer coordinates on an axially 
symmetric body. 1 Body, 2 sunk electrode 
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FIG. 2 

Geometry of a spherical rotating electrode 
(RSE). P Polar RSE, E equatorial RSE, S 
sandwich RSE 
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the following proportionalities b/L '" DI /3 yC 113 e2/3. These relations lead in accord 

with the current definition of the Peclet number, to a general expression as 

(9) 

A successful application of the concentration boundary layer theory is thus limited 

by the condition PeL ~ 00. 

Let us consider now the case of convective diffusion to an electrode formed 
by_ a symmetric part of the slowly rotating spherical spindle, (Fig. 2). The hydrodyna­
mic theory7-11 of the creeping flow, Re ~ 0, of unconfined Newtonian liquids, in­
duced by a slow rotation of a sphere, offers the following description of the meridional 
velocity gradient on the surface of the wall in spherical coordinates (r, 8, <p): 

y(8) = 8rvolr =R = tQRe sin 8 cos 8. (10) 

In spherical coordinates, we clearly have x = R(8 - ( 0), ro = R sin 8, for spherical 
surface of the electrode (Fig. 2). The resulting general relations (3), (6), (7) 
may thus be used in the given case with the following expression of the kinematic 
parametes 1<, x: 

(11 a) 

(11 b) 

where 

(12a) 

(12b) 

f
OL 

H(8o, 8) = 3 sinz s COSI / 2 s ds . 
00 

(13) 

The integral H(8o, 8) can be computed with sufficient accuracy from the following 
expansions: 

{

83(1 - 0.3582 + 0.03125(4
), 8 ~ 1 

H(0,8) ='= 
1-43777 - 2q3/2(1 - 0·4643q2 + 0·25q4) ; 

1 < 8 ~ n/2, 

where it is q = nj2 - 0 in the second expression. 

(14) 

In the special, and probably the most interesting case of a rotating spherical 
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polar electrode 12
•
13

, when eo = 0, eL ~ 1, one can find the following approxi­
mate expression for the mean diffusional fluxes 

For the case of the electrode being formed by the whole surface of the rotating sphere 
the corresponding exact expression of the mean diffusional fluxes is 

(16) 

An Improved Similary Description oj the Convecti ve Diffusion 10 a Sphere 

An exact description of the axially symmetric steady convective diffusion past 

a spherical surface may be generally given as: 

where x(r, e) is a spherical stream function 

Ve = (r s in et l Or!. , Vr = (r2 sin et 1 VoX. (18a ,b) 

For the meridional flow induced by a slow rotation of a sphere, Re -+ 0, in an un­
confined Newtonian liquid thele exists an exact expression for the stream function 7-11 

(19) 

where 

Y = 1 - R/r. (20) 

Substituting Eq. (19) into Eq. (17) and introducing a new quasi-similarity variable 

c(r, e) = coC(Z, e) where 

(21) 

with Ybeing given by Eq. (20), G = G(eo, e) by Eq. (12a) and 

Pe = Re2 Sc/12 , (22) 

the transport equation (17) modifies to the form 

(23) 

where 

(24) 
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expresses some secondary convective effects away from the surface of the sphere 
and 

incorporates the complete effect of longitudinal diffusion. 

In this work we shall neglect both mentioned secondary effects assuming that 
Mo = 0, Me = 0. The resulting solution of the improved similarity problem with the 
boundary conditions apparent from Eqs (20) and (21) 

C = ° for Z = 0, 

C = 1 for Z = P == Pe l
/

3G 

(26a) 

(26b) 

takes a similar structure as the similarity solution in the boundary layer approxima­
tion: 

(27) 

(28) 

In the last expression one can use with the accuracy better than 0'5% the following 
approximation 

{

l + 0·25p3; P < 1·1 
SIl(O) ~ 

H20p(1 + 0'37p-2 exp (- p3)); p> 1·1. 

DISCUSSION AND CONCLUSION 

(29) 

The assessment of the accuracy of the improved similarity solution (28), (29) through 
a detailed study of the boundary value problem (23), (26a,b), with eventually addi­
tional conditions, appears difficult and particularly more so far the practically im­
portant case of high values of p. Relatively easily it is seen that if p ~ 1 then Mo ~ 
~ Pe- 2

/
3

, while Me ~ exp (-Pe). Examination of the secondary convective ef­
fects, without simultaneous incorporatIOn of the effect of longitudinal diffusion, 
thus clearly is not adequate. Numerical solution of this probleml7 for the special 
case of polar electrode, 00 = 0, 0L ~ 1, however, suggests that already for p = 2·5 
all side effects, associated with the terms Me =!= 0, Mo =!= ° in Eq. (23), may be 
neglected while preserving the accuracy of the result, according to Eq. (29), better 
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than 0'5%. This excellent accuracy of the improved similarity description may be 
explained by the fact that the transport equation oizc + 3Z2 ozC = 0 incorporates 
exactly all radial diffusional and convective terms of the original transport equation 
and the effect of longitudinal convection is slightly distorted by the assumption 
of Me = 0 only in the region outside the concentration boundary layer. From this 
originates also the finding that the model yields correct answers (SI! = 1) also for 

Pe = O. 

The principal result of the presented analysis is the conclusion that for p ~ 1,5, i.e. 
roughly for Re2 Sc ~ 40, the results of the boundary value solution of the problem 
may be regarded as sufficiently accurate. For current values of Sc > 1 000 the 
measurements on polar rotating spherical electrodes may thus be safely carried out 
still in the region of Re :::::: 0·2 and even 10wer t3. The reallimitatiolls of the range 
of operating parameters - the electrode diameters, speed of rotation, viscosity -
toward Re --+ 0 are usually set by other factors, most often by the effect of free con­
vection. Free convection dominates as soon as the estimate of the mean diffusional 
fluxes due to the free convection from current correlations l6

•
17 exceeds the value 

of J following from the boundary value description of the forced convective dif­

fusion effects, Eq. (15). 

LIST OF SYMBOLS 

Co 
D 
G,G 
J, J 
L 
p 
Pe = Q4R 2 e/(12DI7) 

ro 
R 

Sh = JR/(coD) 
Sii = JR/(coD) 
Re = QR2 (!/17 
Sc= 17/ (eD) 
X,Y 

concentration of the transport solute 
concentration in the bulk liquid 
diffusivity 
function defined in Eq. (I2a,b) 
local and mean diffusional flux, Eqs. (6), (7) 
longitudinal transport length of the electrode (Fig. I) 
parameter, defined in Eq . (26b) 

spherical radius 
local axial radius of the wall (Fig. 1) 
radius of sphere 

boundary layer coordinates (Fig. 1) 
gradient of meridional velocity 
viscosity 
density 
meridional angle (Fig. 2) 
geometrical parameters of electrode (Fig. 2) 
angular speed of rotating electrode 
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